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Visualizing Electric Fields with VPython 
 
 Python is a popular and versatile programming language that we will use in this course to 
create simple simulations of electric and magnetic fields. VPython is a module that allows basic 
3-D modelling in the language of Python. This lab manual will walk you through the creation of a 
program that simulates the field of an electric dipole. 
 
Double-click on the desktop icon “VIDLE for VPython”. This starts a modified version of the 
standard Python editor IDLE called VIDLE. In this window you can start entering the code for 
your program. We would like our program to do the following: 

- Define an electric dipole—a pair of charges of equal and opposite magnitude. 
- Define a grid of locations at which we will determine the strength and direction of the 

electric field created by the dipole. 
- Calculate the electric field at each location on the grid and display it with an arrow. 
- Place a test charge in the field and simulate its motion. 

 
As programming experience is not a prerequisite for this course, the following assumes you are 
not familiar with programming, let alone VPython. More experienced users can move through the 
instructions more quickly. 
 
Part A: Python basics 
 
To begin, type 
 
 # This program simulates the field generated by an electric dipole 
 
The ‘#’ sign indicates that this line is a “comment”. That is, when the Python interpreter executes 
the program line by line, it will notice the # and proceed to ignore the whole rest of the line. 
Comments are there just to help a human make sense of what the code is doing. You should get in 
the habit of commenting your own code. Any programmer will tell you that there are few things 
worse than trying to make sense of someone else’s code that has not been properly commented. 
 
Press ‘Enter’ twice and type the following: 
 
 from visual import * 
 
This comes at the beginning of every VPython program. It is telling the program to load all the 
definitions in the module visual that is part of the VPython package. These definitions include 
objects like spheres and arrows that we will use shortly. 
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Now hit “Enter” twice and add the following three lines of code to your program: 
 
 # Definition of important constants 
 kcoulomb = 9e9 
 qproton = 1.6e-19 
 
The first line labels this as the section where we are defining important constants that the program 
will use. The second and third lines define Coulomb’s constant and the charge of a proton in SI 
units. Formally we are defining two variables named ‘kcoulomb’ and ‘qproton’ and using the 
assignment operator, ‘=’, to give them the scientifically notated values 9 × 109 and 1.6 × 10-19.  
Although these variable names could be shortened to just ‘k’ and ‘q’ without causing much 
confusion here, it’s a good idea to give descriptive variable names so that there is no chance of 
ambiguity. Variable names can only consist of letters, numbers, and underscores. 
 
Note that Python doesn’t associate any physical units to the values of variables; it just treats them 
as pure numbers. You might consider adding a short comment (beginning with a ‘#’ symbol) on 
the same line after each variable definition just to remind yourself what physical units correspond 
to those values. 
 
Now save your program by going to “File” and then “Save” and typing the filename 
“ElectricDipole.py”. The “.py” extension must be included so that the computer knows that what 
you are typing in the editor should be interpreted as a Python program and not just a text file. 
 
To run the program you can go to “Run” and then “Run Module” or just hit the F5 key. A new 
window will pop up called the Python Shell. This is a command line interface that you can use 
interactively to modify programs as they are running. For now we will just be using it to show us 
the output of our program. Unfortunately the program didn’t return any output to the Shell. This 
is because we have not included any instructions to print the output on the screen. 
 
On a new line add the following code to your program: 
 
 print qproton 
 
Now run it to see what it does. The “print” command writes the value assigned to the variable 
‘qproton’ to the Python Shell when the program is executed. As it stands, the output has no context. 
Replace the above line with the following one and run the program: 
 

print “The charge of a proton is”, qproton, “Coulombs.” 
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This outputs the material in the quotes (called a string) exactly as it is written and inserts the value 
of the variable ‘qproton’ naturally into the output. If you accidentally forget the commas and try 
to run the program you will encounter a “syntax error”, meaning that something in your program 
cannot be understood by the Python interpreter because it does not obey the rules of the language. 
Save your program. 
 
Part B: Defining the electric dipole 
 
Now skip a line or two (this whitespace is all ignored by Python, but it makes reading your program 
easier) and add the following: 
 
 # Definition of the charges 
 plus = sphere() 
 
If you run your program now a window will pop up displaying a gray sphere. We have defined a 
new variable named ‘plus’ and have assigned it to an object now instead of a number. The sphere 
object is defined in the module that we loaded, visual. You can play around with the camera using 
the mouse. Scrolling while holding both the left and right mouse buttons (or use Alt+LeftClick) 
will zoom in and out and scrolling while holding just the right mouse button (or Ctrl+LeftClick) 
will rotate the camera about the origin (in this case the center of the sphere. Note that while the 
graphics window is open your program is still running. To end the program just close the graphics 
window. 
The sphere that appeared is the default sphere when you do not specify any arguments within the 
parentheses. Modify the sphere by replacing the last line with the following: 
 
 plus = sphere(pos = vector(-2e-10, 0, 0), radius = 1e-11, color = color.red) 
 
When you run the program you should now see a smaller red sphere on the left side of your screen. 
The three arguments define the x-y-z position of the sphere, its radius, and its color. All three of 
these are predefined attributes of the sphere-type object defined in visual. Notice that the position 
is a vector attribute whereas the radius is a scalar attribute. Python will rightfully complain if you 
try to feed it nonsense by treating position as a scalar and radius as a vector. The color attribute 
references a predefined value ‘red’ here, but you can assign arbitrary colors by using ‘color = 
vector(R, G, B)’. Here R, G, and B are the amounts of red, green, and blue to mix together, each 
measured on a scale between 0 and 1. Just replace each letter with the value you want—for 
example, ‘color = vector(1, 0, 0)’ would be pure red. The default sphere (without any arguments, 
that is) has position = vector(0,0,0), radius = 1, and color = vector(1,1,1) (which is white). The 
reason why the new sphere only looks slightly smaller than the old one is that the camera 
automatically chooses an appropriate initial zoom value. 
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Add an additional attribute to your sphere after ‘color’ and call it ‘q’. Assign it a value of ‘qproton’. 
The attribute ‘q’ is not associated any visual property of the sphere object, nor is it predefined in 
visual. Instead it is just an extra number associated to the object ‘plus’ that will be used as the 
sphere’s charge to calculate the electric field in the region nearby. 
 
Now on a new line create another sphere object called ‘minus’. Position it at an x-coordinate of 
+2e-10 with the same radius as ‘plus’. Make it blue and assign it a charge of ‘-qproton’. Save your 
program. 
 
Part C: Calculating the electric field 
 
Before we can calculate the electric field 𝐸 at a point we must define a variable that provides the 
locations at which we are interested in finding the field. Let’s start with a single point right between 
the two charges. Add the following to your program: 
 
 # Definition of the grid of points at which to calculate the field 
 locations = vector(0, 0, 0) 
  
We’ll come back and add more points in Part D, but for now it’s easiest to calculate the electric 
field at just one point. Add another two lines of code:  
 

# Routine to calculate the electric field 
E = vector(0, 0, 0) 

 
This second line initializes the electric field variable ‘E’ as a vector of zero length for now. 
 
Now we need to find the relative position vector 𝑟 between the charge and the location at which 
we want to find 𝐸. This is just the difference of the vectors representing the location we’re 
interested in and the position of the source. Write a line of code given by 

 
r = {Insert your own expression here} 

 
to define the position vector from the positive charge to the location we want to evaluate 𝐸. The 
variable ‘plus.pos’ is the vector that gives the position of the positive charge. (Note: The variables 
for the actual components of the charge’s position vector are ‘plus.pos.x’, ‘plus.pos.y’, and 
‘plus.pos.z’. You do not need to use these if you are just interested in the sum or difference of two 
vectors. Python will automatically add or subtract two vector-type variables component by 
component.) 
 
Add a line of code outputting the position vector: 
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 print “The relative position vector is”, r  
 
Now that you have the position vector, you will need to find its magnitude ‘rmag’ and the unit 
vector ‘rhat’. The magnitude of 𝑟 is given by 𝑟 = 	 𝑟%& + 𝑟(& + 𝑟)&. Translate this into a new line 
of code 
 

rmag = {Insert your own expression here} 
 
using the function ‘sqrt()’ and squaring with the ‘**’ (double star) operator (e.g., 3 can be 
expressed as ‘sqrt(3)’ and 𝑟%&, the square of the x-component of 𝑟, can be computed by the 
expression ‘r.x**2’). Add this line of code to print ‘rmag’: 
 

print “The magnitude of the relative position vector is”, rmag 
 
Once you have inserted the line for ‘rmag’, define the unit vector ‘rhat’ using a new line of code: 
 
 rhat = {Insert your own expression here} 
 
and then add a line that prints out ‘rhat’ just as above. 
 
With the relative position vector to the positive charge now calculated (along with its magnitude 
and unit vector), draw an arrow to display it on the screen: 
 
 pos_arrow = arrow(pos = plus.pos, axis = r, color = color.white, shaftwidth = 1e-11) 
 
For this new arrow-type object ‘pos_arrow’, the position attribute is the vector locating the arrow’s 
tail and the axis is the vector providing the arrow’s orientation. You should see a white arrow 
representing the relative position vector show up when you run your program. Afterwards, 
comment out the line defining ‘pos_arrow’ using a # sign at the beginning of it. 
 
Finally we can calculate the value of the electric field variable ‘E’ at the location of interest due to 
the positive charge. Add a line of code that looks like  
 
 E = E + {Insert your own expression here} 
 
where inside the braces you should add a calculation using the formula for the electric field at a 
point due to a point charge. This expression should involve ‘kcoulomb’, ‘plus.q’, ‘rmag’, and 
‘rhat’. Note that the above line does not appear to make sense as a mathematical equation. This is 
okay because the = operator does not mean mathematical equality in Python, it just means 
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assignment. Here we are evaluating the right-hand side first by adding the old value of the vector 
‘E’ (which was (0, 0, 0)) to the calculated vector of the electric field due to the positive charge and 
storing it back in the same variable ‘E’. You can add a line at this point outputting ‘E’: 
 
 print “The value of the electric field due to the positive charge is”, E 
 
Now that we’ve calculated ‘E’, we can create a new arrow to visualize it. Add the following: 
 
 E_arrow = arrow(pos = locations, axis = E_scale * E, color = color.yellow) 
 
Here we have defined ‘E_arrow’ to have a tail located at the vector given by ‘locations’ and an 
orientation in the direction of ‘E’. The quantity ‘E_scale’ is an arbitrary scale factor to make the 
arrow comparable in size to the two spheres (otherwise the length of the arrow would be enormous 
because the value of ‘E’ is much larger as a number than the radius of the spheres). Define a new 
variable ‘E_scale’ right beneath ‘qproton’ in your section of important constants and give it a value 
of 4e-22. 
 
All of this has only calculated the electric field due to the positive charge. We could just copy-
paste our calculation code again below and make a few modifications to also include the negative 
charge, but a far more effective solution is to use a loop. Add a new object called ‘dipole’ beneath 
the definitions of ‘plus’ and ‘minus’ as follows: 
 
 dipole = [plus, minus] 
 
This new object is called a list. The brackets define what items are bundled together into the list, 
in this case the two sphere objects ‘plus’ and ‘minus’. With this list we can modify what we had 
previously written and place the calculations we just did inside a loop over both charges. Modify 
the section ‘Routine to calculate the electric field’ as follows: 
 
 # Routine to calculate the electric field 
 E = vector(0, 0, 0) 
 for charge in dipole: 
 

{Include here all your previous calculations of ‘r’, ‘rmag’, and ‘rhat’ for a charge 
as well as the calculation for the electric field it generates. Make sure it’s indented 
relative to the ‘for’ line above. Change any use of the word ‘plus’ here to the word 
‘charge’ so that it references the respective element of ‘dipole’, and not just ‘plus’} 

 
 E_arrow = arrow(pos = locations, axis = E_scale * E, color = color.yellow) 
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Here we have a ‘for’ loop. In this type of loop each iteration steps through the items in a list (in 
this case each item ‘charge’ in the list ‘dipole’) and all of the code that is indented after the colon 
is executed for each item in the list. The program will apply the indented code first to the object 
‘plus’, which is first item in the list, and then the object ‘minus’. 
 
Notice that ‘r’, ‘rmag’, and ‘rhat’ are redefined when stepping to the next ‘charge’ in the list, but 
‘E’ just gets added to and does not get reset. So the value of ‘E’ after the loop is done is the total 
value of the electric field at the point in ‘locations’ due to all the charges (in this case there are just 
two, but you could easily define more spheres and add them to the list). Note that after the loop is 
done the arrow for the electric field at that point is now plotted, this time using the total value of 
‘E’ from all charges. Make sure you run your program to see that your output makes sense and 
then save it. 
 
Part D: Defining the grid of points 
 
Now that we’ve established how to calculate the electric field at one point, generalizing this to a 
calculation at many different points is easy. We simply have to create another loop over each of 
the elements that we are going to add to ‘locations’. Take all of the code that we just edited in the 
above section and put it within another loop: 
 
 # Routine to calculate electric field 
 for point in locations: 
  E = vector(0, 0, 0) 

{Put the ‘for’ loop to calculate the electric field resulting from both charges here. 
Make sure you change any instance of ‘locations’ in the loop to ‘point’, so that the 
loop now uses the respective element of ‘locations’ appropriate for that iteration.} 

 
This guarantees that every point in locations will be assigned an ‘E_arrow’. Now we just need to 
add more points to ‘locations’. We could make ‘locations’ a list of vectors that we manually add 
one by one, but this is extremely tedious and counterproductive. A better solution is to define a 
grid of vectors and append them to ‘locations’. Replace the section that previously defined 
‘locations’ with the following code: 
 
 # Definition of the grid of points at which to calculate the field 
 locations = [] 
 dx = 1e-10 
 dy = 1e-10 
 dz = 1e-10 
 
 for x in arange(-4.5e-10, 4.5e-10 + dx, dx): 
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  for y in arange(-4.5e-10, 4.5e-10 + dy, dy): 
   for z in arange(-4.5e-10, 4.5e-10 + dz, dz): 
    a = vector(x, y, z) 
    locations.append(a) 
 
Let’s break this code down. We’ve now defined ‘locations’ as an empty list, along with increments 
‘dx’, ‘dy’, and ‘dz’. Then we define three ‘for’ loops nested within each other. Each loop spans a 
discrete set of coordinates over ‘x’, ‘y’, and ‘z’, each starting at -4.5e-10 and spanning up to 4.5e-
10 in increments of 1e-10. (Note that the form of ‘arange()’ is ‘arange(min, max, increment)’, and 
it’s a function that generates a list of equally-spaced values up to but not including its second 
argument. So the lattice goes up to 4.5e-10, but not 4.5e-10 + 1e-10 = 5.5e-10). Inside the loops, 
each set of coordinates is assigned to a temporary vector ‘a’ and ‘locations.append(a)’ appends the 
current vector ‘a’ to the list ‘locations’. Now ‘locations’ will contain the vectors to each point of a 
cubic lattice within the specified range. As a side note, the reason for choosing coordinates with 
half-point values is because a point located exactly on one of the charges would cause a ‘division 
by zero’ error in the calculation of the electric field there. 
 
Before running your program, comment out each line within the ‘for’ loops of the electric field 
calculation that prints output to the Shell. Printing to the screen is so slow that it will take your 
program forever to finish when it does this for each of ~1000 points. The program should now 
show a grid of arrows representing the electric field. Save it once you are satisfied with the output. 
  
Part E: Simulating the motion of a proton in the dipole field 
 
Let’s simulate the dynamics of a proton moving in this electric field. Define a new object on a line 
right beneath the definitions of ‘plus’ and ‘minus’ as follows: 
 
 proton = sphere(pos = vector(5e-10, 3e-10, 4e-10), radius = 1e-11, color = color.cyan, 
q = 1.6e-19, m = 1.7e-27, p = vector(0,0,0), trail = curve(color = color.white)) 
 
All of the above code should be on the same line. Here the new variables are the proton mass ‘m’ 
(given in kg), the proton momentum ‘p’, and a trail to follow the motion of the proton from step 
to step. Now add the following to the end of your program: 
 
 # Simulate the trajectory of a proton 

dt = 1e-17 
t=0 
while t < 3e-13: 
 rate(1000) 

     t = t + dt 
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      E = vector(0,0,0) 
     for charge in dipole: 
           r = proton.pos - charge.pos 
           E = E + kcoulomb * charge.q * norm(r) / mag(r)**2 
      F = proton.q * E 
     proton.p = proton.p + F * dt 
      proton.pos = proton.pos + (proton.p / proton.m) * dt 
      proton.trail.append(proton.pos) 
 
Here ‘while’ is another type of loop that runs until the given condition (here ‘t < 3e-13’) is met, 
norm(r) and mag(r) are predefined functions that allow you to quickly find ‘rmag’ and ‘rhat’ that 
we calculated earlier, the ‘rate()’ command updates the display window, and the 
‘proton.trail.append()’ command appends the latest step to the overall trail tracking the proton’s 
trajectory. From your knowledge of physics, can you figure out what each of the other steps are 
doing? 
 
Experiment with changing various parameters in your program to see how the behavior of the 
proton changes. 
 
Lastly, add a little something extra to your program—your own creative contribution to set it apart 
from what everyone else has done so far. 
 
 


